kernel-4.18.0-553.8.1.el8_10
エラータID: AXSA:2024-8548:20
以下項目について対処しました。
[Security Fix]
- Bluetooth BR/EDR の PIN コードのペアリング手順には、PIN
コードを把握していないくてもペアリングできてしまう問題が
あるため、Bluetooth 通信の可能な範囲にいる攻撃者により、細工
された Bluetooth デバイスアドレスを持つ機器からの通信を介して、
認証の迂回を可能とする脆弱性が存在します。(CVE-2020-26555)
- OverlayFS の fs/overlayfs/namei.c の ovl_lookup() 関数には、
メタデータの複製時にエラーが発生した際の dentry 領域の設定の
欠落に起因したメモリリークの問題があるため、ローカルの攻撃者
により、情報の漏洩を可能とする脆弱性が存在します。
(CVE-2021-46972)
- プロセス間通信機能 (IPC) には、レースコンディションに起因
した不正なスタック領域へのアクセスの問題があるため、ローカル
の攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2021-47069)
- drivers/platform/x86/dell-smbios-wmi.c の
exit_dell_smbios_wmi() 関数 には、DELL 社製 WMI
インターフェースが利用できない環境でも当該インターフェース
用のドライバモジュールの登録を解除してしまう問題があるため、
ローカルの攻撃者により、dell_smbios_wmi ドライバーモジュール
の削除を介して、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2021-47073)
- drivers/net/usb/cdc_eem.c の eem_tx_fixup() 関数には、skb 構造体
を開放する箇所の不備に起因した NULL ポインタデリファレンスの
問題があるため、ローカルの攻撃者により、サービス拒否攻撃を
可能とする脆弱性が存在します。(CVE-2021-47236)
- net: ti には、メモリの解放後利用の問題があるため、ローカルの
攻撃者により、リムーブパスを介して、サービス拒否攻撃を可能
とする脆
弱性が存在します。(CVE-2021-47310)
- drivers/net/ethernet/qualcomm/emac/emac.c の emac_remove()
関数には、処理の順序の不備に起因したメモリ領域の解放後利用
の問題があるため、ローカルの攻撃者により、サービス拒否攻撃
を可能とする脆弱性が存在します。(CVE-2021-47311)
- udf には、潜在的に NULLポインタデリファレンスを起こす問題
があるため、ローカルの攻撃者により、サービス拒否攻撃を可能
とする脆弱性が存在します。(CVE-2021-47353)
- mISDN には、潜在的にメモリの解放後利用を起こす問題がある
ため、ローカルの攻撃者により、巧妙に細工されたデバイスを
介して、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2021-47356)
- drivers/net/can/sja1000/peak_pci.c の peak_pci_remove() 関数
には、メモリ領域の解放後利用の問題があるため、ローカルの
攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2021-47456)
- drivers/net/usb/usbnet.c の usbnet_probe() 関数には、maxpacket
値が 0 の場合におけるゼロ除算の問題があるため、ローカルの
攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2021-47495)
- KVM の svm_set_x2apic_msr_interception() 関数には、チェック
処理に問題があるため、ローカルの攻撃者により、ゲスト OS 内
での APIC のリセットを介して、サービス拒否攻撃を可能とする
脆弱性が存在します。(CVE-2023-5090)
- drivers/edac/thunderx_edac.c の thunderx_ocx_com_threaded_isr()
関数には、境界外書き込みの問題があるため、ローカルの攻撃者
により、サービス拒否攻撃を可能とする脆弱性があります。
(CVE-2023-52464)
- mm/damon/vaddr-test.h の damon_do_test_apply_three_regions()
関数には、メモリリークの問題があるため、ローカルの攻撃者に
より、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2023-52560)
- hwrngサブシステム には、デバイスのリードパスにデッドロック
の問題があるため、ローカルの攻撃者により、/dev/hwrng を介して
再帰的な読み込みをトリガーし、デッドロックを引き起こせて
しまう脆弱性があります。(CVE-2023-52615)
- mlx5e ネットワークデバイスドライバーには、演算子の優先順位
の誤りに起因するメモリ領域の範囲外アクセスの問題があるため、
ローカルの攻撃者により、サービス拒否攻撃を可能とする脆弱性
が存在します。(CVE-2023-52626)
- drivers/net/ethernet/mellanox/mlx5/core/en/fs_tt_redirect.c の
fs_any_create_groups() 関数には、メモリ領域の二重解放の問題
があるため、ローカルの攻撃者により、サービス拒否攻撃を可能
とする脆弱性が存在します。(CVE-2023-52667)
- net/tipc/socket.c の IOV イテレーターからのコピー処理の妥当性
チェック処理には、コピー方向の情報が欠落している場合、不正
な警告メッセージが出力されてしまう問題があるため、ローカル
の攻撃者により、データのない SYN もしくは ACK パケットの
送信を介して、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2023-52700)
- drivers/net/usb/kalmia.c の kalmia_send_init_packet() 関数には、
エラーメッセージ内に不正な変数値を埋め込んでしまう問題が
あるため、ローカルの攻撃者により、サービス拒否攻撃を可能
とする脆弱性が存在します。(CVE-2023-52703)
- drivers/usb/core/config.c の usb_get_bos_descriptor() 関数には、
ループ処理の制御に問題があるため、ローカルの攻撃者により、
サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2023-52781)
- crypto/pcrypt.c には、誤ったエラー値を返してしまう問題がある
ため、ローカルの攻撃者により、サービス拒否攻撃 (ハングアップ
の発生) を可能とする脆弱性が存在します。(CVE-2023-52813)
- kernel/events/ring_buffer.c の rb_alloc_aux() 関数には、チェック
処理の欠落に起因した AUX 領域の範囲外アクセスの問題がある
ため、ローカルの攻撃者により、サービス拒否攻撃を可能とする
脆弱性が存在します。(CVE-2023-52835)
- drivers/usb/typec/tcpm/tcpm.c の tcpm_pd_svdm() 関数には、
チェック処理の欠落に起因した NULL ポインタデリファレンス
の問題があるため、ローカルの攻撃者により、サービス拒否攻撃
を可能とする脆弱性が存在します。(CVE-2023-52877)
- drivers/net/can/dev/skb.c の can_put_echo_skb() 関数には、
誤ったアサーションに抵触してしまう問題があるため、ローカル
の攻撃者により、不正なメモリ領域からのアクセスを介して、
サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2023-52878)
- net/ipv4/tcp_input.c の tcp_ack() 関数には、送信していないデータ
の ACK パケットを受け入れてしまう問題があるため、リモートの
攻撃者により、細工されたパケットの送信を介して、サービス拒否
攻撃を可能とする脆弱性が存在します。(CVE-2023-52881)
- TLS サブシステムには、非同期暗号化ハンドラーが complete()
関数を呼び出した際に recvmsg(2) システムコールおよび
sendmsg(2) システムコールの実行スレッドがすぐに終了してしまう
問題に起因したレースコンディションの問題があるため、ローカル
の攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2024-26583)
- TLS サブシステムの crypto_aead_encrypt() 関数および
crypto_aead_decrypt() 関数には、
CRYPTO_TFM_REQ_MAY_BACKLOG フラグを指定して実行した
場合、EINPROGRESS の代わりに誤って EBUSY を返してしまう
問題があるため、ローカルの攻撃者により、cryptd のキューが
溢れる状況下でのこれらの関数の呼び出しを介して、サービス拒否
攻撃、および影響を特定できない未定義の動作を可能とする脆弱性
が存在します。(CVE-2024-26584)
- TLS サブシステムの非同期暗号化ハンドラーには、内部で
complete() 関数を呼び出した際に recvmsg(2) システムコールおよび
sendmsg(2) システムコールの実行スレッドを意図せず終了して
しまう問題があるため、ローカルの攻撃者により、サービス拒否
攻撃、および影響を特定できない未定義の動作を可能とする脆弱性
が存在します。(CVE-2024-26585)
- AMD 社製 GPU ドライバーの
drivers/gpu/drm/amd/amdgpu/amdgpu_hmm.c の
mmu_interval_notifier_ops() 関数には、メモリ領域の解放後利用の
問題があるため、ローカルの攻撃者により、
amdgpu_gem_userptr_ioctl() 関数への無効なアドレスとサイズの
引き渡しを介して、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2024-26656)
- drivers/net/ppp/ppp_async.c の ppp_async_ioctl() 関数には、
入力されたサイズのチェック処理が欠落しているため、ローカルの
攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-26675)
- IPv6 ネットワークスタックの net/ipv6/seg6.c の seg6_init()
関数には、ロジックの処理順序の不備に起因した NULL ポインタ
デリファレンスもしくはメモリ領域の解放後利用の問題があるため、
ローカルの攻撃者により、サービス拒否攻撃を可能とする脆弱性
が存在します。(CVE-2024-26735)
- スワップ管理機能には、レースコンディションに起因してスワップ
領域のデータを破損してしまう問題があるため、ローカルの攻撃者
により、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-26759)
- Bluetooth HCI サブシステムの net/bluetooth/hci_core.c の
hci_error_reset() 関数には、HCI_EV_HARDWARE_ERROR
イベントの処理中に Bluetooth コントローラーが応答しない場合
におけるメモリ領域の解放後利用の問題があるため、ローカルの
攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-26801)
- net/ipv4/ip_tunnel.c には、バッファーオーバーフローの問題がある
ため、ローカルの攻撃者により、サービス拒否攻撃を可能とする
脆弱性が存在します。(CVE-2024-26804)
- net/mptcp/protocol.c の __mptcp_retransmit_pending_data() 関数
には、サブフローが古い場合のリカバリ処理時のチェックに問題が
あるため、ローカルの攻撃者により、サービス拒否攻撃を可能と
する脆弱性が存在します。(CVE-2024-26826)
- drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h の EEH エラー
の回復処理には、送信タイムアウト処理に起因したレース
コンディション、および NULL ポインタデリファレンスの問題が
あるため、ローカルの攻撃者により、サービス拒否攻撃 (クラッシュ
の発生) を可能とする脆弱性が存在します。(CVE-2024-26859)
- arch/x86/mm/maccess.c の copy_from_kernel_nofault_allowed()
関数には、ページフォルトが発生してしまう問題があるため、
ローカルの攻撃者により、サービス拒否攻撃を可能とする脆弱性
が存在します。(CVE-2024-26906)
- mlx5 ドライバには、eth セグメントへのアクセス時の不正なメモリ
領域のコピー処理に起因して意図しない警告メッセージが出力されて
しまう問題があるため、ローカルの攻撃者により、データ破壊、
およびサービス拒否攻撃などを可能とする脆弱性が存在します。
(CVE-2024-26907)
- drivers/crypto/qat/qat_common/adf_aer.c の PCI AER システムの
エラーリカバリ処理には、reset_data 構造体の解放処理のレース
コンディションに起因した解放後利用の問題があるため、ローカル
の攻撃者により、デバイスの再起動処理を介して、情報の漏洩、
およびサービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-26974)
- fs/squashfs/inode.c の squashfs_new_inode() 関数には、inode
番号のチェック処理漏れに起因したメモリ領域の範囲外アクセスの
問題があるため、ローカルの攻撃者により、サービス拒否攻撃を
可能とする脆弱性が存在します。(CVE-2024-26982)
- Netfilter サブシステムには、トランザクションのタイムアウト
発生時の処理の欠陥に起因したメモリ領域の解放後利用の問題が
あるため、ローカルの攻撃者により、特権昇格、およびサービス
拒否攻撃 (クラッシュの発生) を可能とする脆弱性が存在します。
(CVE-2024-27397)
- net/wireless/nl80211.c の cfg80211_change_iface() 関数には、
ローカルの攻撃者により、メッシュモードへの変更とメッシュ ID
の変更を同時に実施することを介して、サービス拒否攻撃を可能
とする脆弱性が存在します。(CVE-2024-27410)
- net/mac80211/cfg.c の ieee80211_change_station() 関数には、
メモリ領域の解放後利用の問題があるため、ローカルの攻撃者
により、VLAN として利用していたステーションからの移動と、
それによる使用済み VLAN の削除を介して、サービス拒否攻撃を
可能とする脆弱性が存在します。(CVE-2024-35789)
- drivers/net/ethernet/mellanox/mlx5/core/en_arfs.c の
arfs_create_groups() 関数には、メモリ領域の二重解放の問題が
あるため、ローカルの攻撃者により、サービス拒否攻撃を可能
とする脆弱性が存在します。(CVE-2024-35835)
- Wi-Fi スタックの net/mac80211/sta_info.c の sta_info_free()
関数には、ステーションが割り当てられ、リンクが有効化され
ない状態で追加された場合、リンクを有効化せずに割り当てた
ステーションを削除してしまう問題があるため、ローカルの
攻撃者により、リンク情報の漏洩、およびサービス拒否攻撃を
可能とする脆弱性が存在します。(CVE-2024-35838)
- wifi: iwlwifi: dbg-tlv には、文字列のNULL終端を確認していない
問題があるため、ローカルの攻撃者により、悪意ある設定を
介して、サービス妨害を可能とする脆弱性が存在します。
(CVE-2024-35845)
- drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c の
mlxsw_sp_acl_tcam_vregion_destroy() 関数には、ACL 領域の
削除処理の保留時にキャンセル処理が実行された場合、特定の
データがメモリリークしてしまう問題があるため、ローカルの
攻撃者により、サービス拒否攻撃を可能とする脆弱性が存在
します。(CVE-2024-35852)
- drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c には、
フィルター移行のロールバック処理の失敗時に再ロールバックを
してしまう問題があるため、ローカルの攻撃者により、サービス
拒否攻撃を可能とする脆弱性が存在します。(CVE-2024-35853)
- drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c の
mlxsw_sp_acl_tcam_vregion_rehash() 関数には、フィルターの
移行処理に失敗が発生した場合におけるメモリ領域の解放後利用
の問題があるため、ローカルの攻撃者により、サービス拒否攻撃
を可能とする脆弱性が存在します。(CVE-2024-35854)
- mlxsw には、潜在的にメモリの解放後利用の問題があるため、
ローカルの攻撃者により、巧妙に細工された設定を介して、
サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-35855)
- IPv4 および IPv6 プロトコルスタックの GRE 機能には、
pskb_may_pull() 関数の呼び出しおよびその結果のチェック処理
が欠落しているため、ローカルの攻撃者により、サービス拒否
攻撃を可能とする脆弱性が存在します。(CVE-2024-35888)
- net/core/skbuff.c の skb_gro_receive_list() 関数および
skb_gro_receive() 関数には、ソケットバッファ内のポインタ
の初期化処理が欠落しているため、ローカルの攻撃者により、
サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-35890)
- drivers/net/ethernet/amazon/ena/ena_netdev.c には、VF
リセット処理時の送信キュー内のデスクリプタの解放処理に
問題があるため、ローカルの攻撃者により、サービス拒否攻撃
(クラッシュの発生) を可能とする脆弱性が存在します。
(CVE-2024-35958)
- mlx5e ドライバーの初期化処理には、ロックを獲得する位置に
問題があるため、ローカルの攻撃者により、サービス拒否攻撃
を可能とする脆弱性が存在します。(CVE-2024-35959)
- drivers/net/ethernet/mellanox/mlx5/core/fs_core.c の
add_rule_fg() 関数には、ルールの追加処理時の処理に問題が
あるため、ローカルの攻撃者により、フローグループの削除
を介して、サービス拒否攻撃 (クラッシュの発生) を可能とする
脆弱性が存在します。(CVE-2024-35960)
- drivers/net/ethernet/intel/i40e/i40e_main.c の i40e_init_module()
関数には、ワークキューの実際の割り当て状況と割り当て状況を
管理するフラグ間の不整合に起因して不正な警告メッセージが
出力されてしまう問題があるため、ローカルの攻撃者により、
サービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2024-36004)
- drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c の
リハッシュ処理には、エラーが発生した際に処理対象データの
位置を示す変数のリセット処理が欠落しているため、ローカル
の攻撃者により、サービス拒否攻撃 (不正な警告メッセージの
出力) を可能とする脆弱性が存在します。(CVE-2024-36007)
パッケージをアップデートしてください。
Bluetooth legacy BR/EDR PIN code pairing in Bluetooth Core Specification 1.0B through 5.2 may permit an unauthenticated nearby device to spoof the BD_ADDR of the peer device to complete pairing without knowledge of the PIN.
In the Linux kernel, the following vulnerability has been resolved: ARM: footbridge: fix PCI interrupt mapping Since commit 30fdfb929e82 ("PCI: Add a call to pci_assign_irq() in pci_device_probe()"), the PCI code will call the IRQ mapping function whenever a PCI driver is probed. If these are marked as __init, this causes an oops if a PCI driver is loaded or bound after the kernel has initialised.
In the Linux kernel, the following vulnerability has been resolved: ovl: fix leaked dentry Since commit 6815f479ca90 ("ovl: use only uppermetacopy state in ovl_lookup()"), overlayfs doesn't put temporary dentry when there is a metacopy error, which leads to dentry leaks when shutting down the related superblock: overlayfs: refusing to follow metacopy origin for (/file0) ... BUG: Dentry (____ptrval____){i=3f33,n=file3} still in use (1) [unmount of overlay overlay] ... WARNING: CPU: 1 PID: 432 at umount_check.cold+0x107/0x14d CPU: 1 PID: 432 Comm: unmount-overlay Not tainted 5.12.0-rc5 #1 ... RIP: 0010:umount_check.cold+0x107/0x14d ... Call Trace: d_walk+0x28c/0x950 ? dentry_lru_isolate+0x2b0/0x2b0 ? __kasan_slab_free+0x12/0x20 do_one_tree+0x33/0x60 shrink_dcache_for_umount+0x78/0x1d0 generic_shutdown_super+0x70/0x440 kill_anon_super+0x3e/0x70 deactivate_locked_super+0xc4/0x160 deactivate_super+0xfa/0x140 cleanup_mnt+0x22e/0x370 __cleanup_mnt+0x1a/0x30 task_work_run+0x139/0x210 do_exit+0xb0c/0x2820 ? __kasan_check_read+0x1d/0x30 ? find_held_lock+0x35/0x160 ? lock_release+0x1b6/0x660 ? mm_update_next_owner+0xa20/0xa20 ? reacquire_held_locks+0x3f0/0x3f0 ? __sanitizer_cov_trace_const_cmp4+0x22/0x30 do_group_exit+0x135/0x380 __do_sys_exit_group.isra.0+0x20/0x20 __x64_sys_exit_group+0x3c/0x50 do_syscall_64+0x45/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae ... VFS: Busy inodes after unmount of overlay. Self-destruct in 5 seconds. Have a nice day... This fix has been tested with a syzkaller reproducer.
In the Linux kernel, the following vulnerability has been resolved: ipc/mqueue, msg, sem: avoid relying on a stack reference past its expiry do_mq_timedreceive calls wq_sleep with a stack local address. The sender (do_mq_timedsend) uses this address to later call pipelined_send. This leads to a very hard to trigger race where a do_mq_timedreceive call might return and leave do_mq_timedsend to rely on an invalid address, causing the following crash: RIP: 0010:wake_q_add_safe+0x13/0x60 Call Trace: __x64_sys_mq_timedsend+0x2a9/0x490 do_syscall_64+0x80/0x680 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f5928e40343 The race occurs as: 1. do_mq_timedreceive calls wq_sleep with the address of `struct ext_wait_queue` on function stack (aliased as `ewq_addr` here) - it holds a valid `struct ext_wait_queue *` as long as the stack has not been overwritten. 2. `ewq_addr` gets added to info->e_wait_q[RECV].list in wq_add, and do_mq_timedsend receives it via wq_get_first_waiter(info, RECV) to call __pipelined_op. 3. Sender calls __pipelined_op::smp_store_release(&this->state, STATE_READY). Here is where the race window begins. (`this` is `ewq_addr`.) 4. If the receiver wakes up now in do_mq_timedreceive::wq_sleep, it will see `state == STATE_READY` and break. 5. do_mq_timedreceive returns, and `ewq_addr` is no longer guaranteed to be a `struct ext_wait_queue *` since it was on do_mq_timedreceive's stack. (Although the address may not get overwritten until another function happens to touch it, which means it can persist around for an indefinite time.) 6. do_mq_timedsend::__pipelined_op() still believes `ewq_addr` is a `struct ext_wait_queue *`, and uses it to find a task_struct to pass to the wake_q_add_safe call. In the lucky case where nothing has overwritten `ewq_addr` yet, `ewq_addr->task` is the right task_struct. In the unlucky case, __pipelined_op::wake_q_add_safe gets handed a bogus address as the receiver's task_struct causing the crash. do_mq_timedsend::__pipelined_op() should not dereference `this` after setting STATE_READY, as the receiver counterpart is now free to return. Change __pipelined_op to call wake_q_add_safe on the receiver's task_struct returned by get_task_struct, instead of dereferencing `this` which sits on the receiver's stack. As Manfred pointed out, the race potentially also exists in ipc/msg.c::expunge_all and ipc/sem.c::wake_up_sem_queue_prepare. Fix those in the same way.
In the Linux kernel, the following vulnerability has been resolved: platform/x86: dell-smbios-wmi: Fix oops on rmmod dell_smbios init_dell_smbios_wmi() only registers the dell_smbios_wmi_driver on systems where the Dell WMI interface is supported. While exit_dell_smbios_wmi() unregisters it unconditionally, this leads to the following oops: [ 175.722921] ------------[ cut here ]------------ [ 175.722925] Unexpected driver unregister! [ 175.722939] WARNING: CPU: 1 PID: 3630 at drivers/base/driver.c:194 driver_unregister+0x38/0x40 ... [ 175.723089] Call Trace: [ 175.723094] cleanup_module+0x5/0xedd [dell_smbios] ... [ 175.723148] ---[ end trace 064c34e1ad49509d ]--- Make the unregister happen on the same condition the register happens to fix this.
In the Linux kernel, the following vulnerability has been resolved: net: cdc_eem: fix tx fixup skb leak when usbnet transmit a skb, eem fixup it in eem_tx_fixup(), if skb_copy_expand() failed, it return NULL, usbnet_start_xmit() will have no chance to free original skb. fix it by free orginal skb in eem_tx_fixup() first, then check skb clone status, if failed, return NULL to usbnet.
In the Linux kernel, the following vulnerability has been resolved: net: ti: fix UAF in tlan_remove_one priv is netdev private data and it cannot be used after free_netdev() call. Using priv after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function.
In the Linux kernel, the following vulnerability has been resolved: net: qcom/emac: fix UAF in emac_remove adpt is netdev private data and it cannot be used after free_netdev() call. Using adpt after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function.
In the Linux kernel, the following vulnerability has been resolved: udf: Fix NULL pointer dereference in udf_symlink function In function udf_symlink, epos.bh is assigned with the value returned by udf_tgetblk. The function udf_tgetblk is defined in udf/misc.c and returns the value of sb_getblk function that could be NULL. Then, epos.bh is used without any check, causing a possible NULL pointer dereference when sb_getblk fails. This fix adds a check to validate the value of epos.bh.
In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible use-after-free in HFC_cleanup() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
In the Linux kernel, the following vulnerability has been resolved: can: peak_pci: peak_pci_remove(): fix UAF When remove the module peek_pci, referencing 'chan' again after releasing 'dev' will cause UAF. Fix this by releasing 'dev' later. The following log reveals it: [ 35.961814 ] BUG: KASAN: use-after-free in peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.963414 ] Read of size 8 at addr ffff888136998ee8 by task modprobe/5537 [ 35.965513 ] Call Trace: [ 35.965718 ] dump_stack_lvl+0xa8/0xd1 [ 35.966028 ] print_address_description+0x87/0x3b0 [ 35.966420 ] kasan_report+0x172/0x1c0 [ 35.966725 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967137 ] ? trace_irq_enable_rcuidle+0x10/0x170 [ 35.967529 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967945 ] __asan_report_load8_noabort+0x14/0x20 [ 35.968346 ] peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.968752 ] pci_device_remove+0xa9/0x250
In the Linux kernel, the following vulnerability has been resolved: usbnet: sanity check for maxpacket maxpacket of 0 makes no sense and oopses as we need to divide by it. Give up. V2: fixed typo in log and stylistic issues
A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition.
In the Linux kernel, the following vulnerability has been resolved: EDAC/thunderx: Fix possible out-of-bounds string access Enabling -Wstringop-overflow globally exposes a warning for a common bug in the usage of strncat(): drivers/edac/thunderx_edac.c: In function 'thunderx_ocx_com_threaded_isr': drivers/edac/thunderx_edac.c:1136:17: error: 'strncat' specified bound 1024 equals destination size [-Werror=stringop-overflow=] 1136 | strncat(msg, other, OCX_MESSAGE_SIZE); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... 1145 | strncat(msg, other, OCX_MESSAGE_SIZE); ... 1150 | strncat(msg, other, OCX_MESSAGE_SIZE); ... Apparently the author of this driver expected strncat() to behave the way that strlcat() does, which uses the size of the destination buffer as its third argument rather than the length of the source buffer. The result is that there is no check on the size of the allocated buffer. Change it to strlcat(). [ bp: Trim compiler output, fixup commit message. ]
In the Linux kernel, the following vulnerability has been resolved: mm/damon/vaddr-test: fix memory leak in damon_do_test_apply_three_regions() When CONFIG_DAMON_VADDR_KUNIT_TEST=y and making CONFIG_DEBUG_KMEMLEAK=y and CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y, the below memory leak is detected. Since commit 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary variables"), the damon_destroy_ctx() is removed, but still call damon_new_target() and damon_new_region(), the damon_region which is allocated by kmem_cache_alloc() in damon_new_region() and the damon_target which is allocated by kmalloc in damon_new_target() are not freed. And the damon_region which is allocated in damon_new_region() in damon_set_regions() is also not freed. So use damon_destroy_target to free all the damon_regions and damon_target. unreferenced object 0xffff888107c9a940 (size 64): comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk 60 c7 9c 07 81 88 ff ff f8 cb 9c 07 81 88 ff ff `............... backtrace: [
In the Linux kernel, the following vulnerability has been resolved: hwrng: core - Fix page fault dead lock on mmap-ed hwrng There is a dead-lock in the hwrng device read path. This triggers when the user reads from /dev/hwrng into memory also mmap-ed from /dev/hwrng. The resulting page fault triggers a recursive read which then dead-locks. Fix this by using a stack buffer when calling copy_to_user.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix operation precedence bug in port timestamping napi_poll context Indirection (*) is of lower precedence than postfix increment (++). Logic in napi_poll context would cause an out-of-bound read by first increment the pointer address by byte address space and then dereference the value. Rather, the intended logic was to dereference first and then increment the underlying value.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a potential double-free in fs_any_create_groups When kcalloc() for ft->g succeeds but kvzalloc() for in fails, fs_any_create_groups() will free ft->g. However, its caller fs_any_create_table() will free ft->g again through calling mlx5e_destroy_flow_table(), which will lead to a double-free. Fix this by setting ft->g to NULL in fs_any_create_groups().
In the Linux kernel, the following vulnerability has been resolved: crypto: s390/aes - Fix buffer overread in CTR mode When processing the last block, the s390 ctr code will always read a whole block, even if there isn't a whole block of data left. Fix this by using the actual length left and copy it into a buffer first for processing.
In the Linux kernel, the following vulnerability has been resolved: powerpc/imc-pmu: Add a null pointer check in update_events_in_group() kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.
In the Linux kernel, the following vulnerability has been resolved: powerpc/powernv: Add a null pointer check in opal_event_init() kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.
In the Linux kernel, the following vulnerability has been resolved: tipc: fix kernel warning when sending SYN message When sending a SYN message, this kernel stack trace is observed: ... [ 13.396352] RIP: 0010:_copy_from_iter+0xb4/0x550 ... [ 13.398494] Call Trace: [ 13.398630]
In the Linux kernel, the following vulnerability has been resolved: net/usb: kalmia: Don't pass act_len in usb_bulk_msg error path syzbot reported that act_len in kalmia_send_init_packet() is uninitialized when passing it to the first usb_bulk_msg error path. Jiri Pirko noted that it's pointless to pass it in the error path, and that the value that would be printed in the second error path would be the value of act_len from the first call to usb_bulk_msg.[1] With this in mind, let's just not pass act_len to the usb_bulk_msg error paths. 1: https://lore.kernel.org/lkml/Y9pY61y1nwTuzMOa@nanopsycho/
In the Linux kernel, the following vulnerability has been resolved: usb: config: fix iteration issue in 'usb_get_bos_descriptor()' The BOS descriptor defines a root descriptor and is the base descriptor for accessing a family of related descriptors. Function 'usb_get_bos_descriptor()' encounters an iteration issue when skipping the 'USB_DT_DEVICE_CAPABILITY' descriptor type. This results in the same descriptor being read repeatedly. To address this issue, a 'goto' statement is introduced to ensure that the pointer and the amount read is updated correctly. This ensures that the function iterates to the next descriptor instead of reading the same descriptor repeatedly.
In the Linux kernel, the following vulnerability has been resolved: crypto: pcrypt - Fix hungtask for PADATA_RESET We found a hungtask bug in test_aead_vec_cfg as follows: INFO: task cryptomgr_test:391009 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Call trace: __switch_to+0x98/0xe0 __schedule+0x6c4/0xf40 schedule+0xd8/0x1b4 schedule_timeout+0x474/0x560 wait_for_common+0x368/0x4e0 wait_for_completion+0x20/0x30 wait_for_completion+0x20/0x30 test_aead_vec_cfg+0xab4/0xd50 test_aead+0x144/0x1f0 alg_test_aead+0xd8/0x1e0 alg_test+0x634/0x890 cryptomgr_test+0x40/0x70 kthread+0x1e0/0x220 ret_from_fork+0x10/0x18 Kernel panic - not syncing: hung_task: blocked tasks For padata_do_parallel, when the return err is 0 or -EBUSY, it will call wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal case, aead_request_complete() will be called in pcrypt_aead_serial and the return err is 0 for padata_do_parallel. But, when pinst->flags is PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it won't call aead_request_complete(). Therefore, test_aead_vec_cfg will hung at wait_for_completion(&wait->completion), which will cause hungtask. The problem comes as following: (padata_do_parallel) | rcu_read_lock_bh(); | err = -EINVAL; | (padata_replace) | pinst->flags |= PADATA_RESET; err = -EBUSY | if (pinst->flags & PADATA_RESET) | rcu_read_unlock_bh() | return err In order to resolve the problem, we replace the return err -EBUSY with -EAGAIN, which means parallel_data is changing, and the caller should call it again. v3: remove retry and just change the return err. v2: introduce padata_try_do_parallel() in pcrypt_aead_encrypt and pcrypt_aead_decrypt to solve the hungtask.
In the Linux kernel, the following vulnerability has been resolved: perf/core: Bail out early if the request AUX area is out of bound When perf-record with a large AUX area, e.g 4GB, it fails with: #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1 failed to mmap with 12 (Cannot allocate memory) and it reveals a WARNING with __alloc_pages(): ------------[ cut here ]------------ WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248 Call trace: __alloc_pages+0x1ec/0x248 __kmalloc_large_node+0xc0/0x1f8 __kmalloc_node+0x134/0x1e8 rb_alloc_aux+0xe0/0x298 perf_mmap+0x440/0x660 mmap_region+0x308/0x8a8 do_mmap+0x3c0/0x528 vm_mmap_pgoff+0xf4/0x1b8 ksys_mmap_pgoff+0x18c/0x218 __arm64_sys_mmap+0x38/0x58 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0x58/0x188 do_el0_svc+0x34/0x50 el0_svc+0x34/0x108 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x1a4/0x1a8 'rb->aux_pages' allocated by kcalloc() is a pointer array which is used to maintains AUX trace pages. The allocated page for this array is physically contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the size of pointer array crosses the limitation set by MAX_ORDER, it reveals a WARNING. So bail out early with -ENOMEM if the request AUX area is out of bound, e.g.: #perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1 failed to mmap with 12 (Cannot allocate memory)
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: Fix NULL pointer dereference in tcpm_pd_svdm() It is possible that typec_register_partner() returns ERR_PTR on failure. When port->partner is an error, a NULL pointer dereference may occur as shown below. [91222.095236][ T319] typec port0: failed to register partner (-17) ... [91225.061491][ T319] Unable to handle kernel NULL pointer dereference at virtual address 000000000000039f [91225.274642][ T319] pc : tcpm_pd_data_request+0x310/0x13fc [91225.274646][ T319] lr : tcpm_pd_data_request+0x298/0x13fc [91225.308067][ T319] Call trace: [91225.308070][ T319] tcpm_pd_data_request+0x310/0x13fc [91225.308073][ T319] tcpm_pd_rx_handler+0x100/0x9e8 [91225.355900][ T319] kthread_worker_fn+0x178/0x58c [91225.355902][ T319] kthread+0x150/0x200 [91225.355905][ T319] ret_from_fork+0x10/0x30 Add a check for port->partner to avoid dereferencing a NULL pointer.
In the Linux kernel, the following vulnerability has been resolved: can: dev: can_put_echo_skb(): don't crash kernel if can_priv::echo_skb is accessed out of bounds If the "struct can_priv::echoo_skb" is accessed out of bounds, this would cause a kernel crash. Instead, issue a meaningful warning message and return with an error.
In the Linux kernel, the following vulnerability has been resolved: tcp: do not accept ACK of bytes we never sent This patch is based on a detailed report and ideas from Yepeng Pan and Christian Rossow. ACK seq validation is currently following RFC 5961 5.2 guidelines: The ACK value is considered acceptable only if it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT). All incoming segments whose ACK value doesn't satisfy the above condition MUST be discarded and an ACK sent back. It needs to be noted that RFC 793 on page 72 (fifth check) says: "If the ACK is a duplicate (SEG.ACK < SND.UNA), it can be ignored. If the ACK acknowledges something not yet sent (SEG.ACK > SND.NXT) then send an ACK, drop the segment, and return". The "ignored" above implies that the processing of the incoming data segment continues, which means the ACK value is treated as acceptable. This mitigation makes the ACK check more stringent since any ACK < SND.UNA wouldn't be accepted, instead only ACKs that are in the range ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT) get through. This can be refined for new (and possibly spoofed) flows, by not accepting ACK for bytes that were never sent. This greatly improves TCP security at a little cost. I added a Fixes: tag to make sure this patch will reach stable trees, even if the 'blamed' patch was adhering to the RFC. tp->bytes_acked was added in linux-4.2 Following packetdrill test (courtesy of Yepeng Pan) shows the issue at hand: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1024) = 0 // ---------------- Handshake ------------------- // // when window scale is set to 14 the window size can be extended to // 65535 * (2^14) = 1073725440. Linux would accept an ACK packet // with ack number in (Server_ISN+1-1073725440. Server_ISN+1) // ,though this ack number acknowledges some data never // sent by the server. +0 < S 0:0(0) win 65535
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires.
In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical.
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung
In the Linux kernel, the following vulnerability has been resolved: ppp_async: limit MRU to 64K syzbot triggered a warning [1] in __alloc_pages(): WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp) Willem fixed a similar issue in commit c0a2a1b0d631 ("ppp: limit MRU to 64K") Adopt the same sanity check for ppp_async_ioctl(PPPIOCSMRU) [1]: WARNING: CPU: 1 PID: 11 at mm/page_alloc.c:4543 __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 Modules linked in: CPU: 1 PID: 11 Comm: kworker/u4:0 Not tainted 6.8.0-rc2-syzkaller-g41bccc98fb79 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: events_unbound flush_to_ldisc pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 lr : __alloc_pages+0xc8/0x698 mm/page_alloc.c:4537 sp : ffff800093967580 x29: ffff800093967660 x28: ffff8000939675a0 x27: dfff800000000000 x26: ffff70001272ceb4 x25: 0000000000000000 x24: ffff8000939675c0 x23: 0000000000000000 x22: 0000000000060820 x21: 1ffff0001272ceb8 x20: ffff8000939675e0 x19: 0000000000000010 x18: ffff800093967120 x17: ffff800083bded5c x16: ffff80008ac97500 x15: 0000000000000005 x14: 1ffff0001272cebc x13: 0000000000000000 x12: 0000000000000000 x11: ffff70001272cec1 x10: 1ffff0001272cec0 x9 : 0000000000000001 x8 : ffff800091c91000 x7 : 0000000000000000 x6 : 000000000000003f x5 : 00000000ffffffff x4 : 0000000000000000 x3 : 0000000000000020 x2 : 0000000000000008 x1 : 0000000000000000 x0 : ffff8000939675e0 Call trace: __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 __alloc_pages_node include/linux/gfp.h:238 [inline] alloc_pages_node include/linux/gfp.h:261 [inline] __kmalloc_large_node+0xbc/0x1fc mm/slub.c:3926 __do_kmalloc_node mm/slub.c:3969 [inline] __kmalloc_node_track_caller+0x418/0x620 mm/slub.c:4001 kmalloc_reserve+0x17c/0x23c net/core/skbuff.c:590 __alloc_skb+0x1c8/0x3d8 net/core/skbuff.c:651 __netdev_alloc_skb+0xb8/0x3e8 net/core/skbuff.c:715 netdev_alloc_skb include/linux/skbuff.h:3235 [inline] dev_alloc_skb include/linux/skbuff.h:3248 [inline] ppp_async_input drivers/net/ppp/ppp_async.c:863 [inline] ppp_asynctty_receive+0x588/0x186c drivers/net/ppp/ppp_async.c:341 tty_ldisc_receive_buf+0x12c/0x15c drivers/tty/tty_buffer.c:390 tty_port_default_receive_buf+0x74/0xac drivers/tty/tty_port.c:37 receive_buf drivers/tty/tty_buffer.c:444 [inline] flush_to_ldisc+0x284/0x6e4 drivers/tty/tty_buffer.c:494 process_one_work+0x694/0x1204 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x938/0xef4 kernel/workqueue.c:2787 kthread+0x288/0x310 kernel/kthread.c:388 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
In the Linux kernel, the following vulnerability has been resolved: ipv6: sr: fix possible use-after-free and null-ptr-deref The pernet operations structure for the subsystem must be registered before registering the generic netlink family.
In the Linux kernel, the following vulnerability has been resolved: mm/swap: fix race when skipping swapcache When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads swapin the same entry at the same time, they get different pages (A, B). Before one thread (T0) finishes the swapin and installs page (A) to the PTE, another thread (T1) could finish swapin of page (B), swap_free the entry, then swap out the possibly modified page reusing the same entry. It breaks the pte_same check in (T0) because PTE value is unchanged, causing ABA problem. Thread (T0) will install a stalled page (A) into the PTE and cause data corruption. One possible callstack is like this: CPU0 CPU1 ---- ---- do_swap_page() do_swap_page() with same entry
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Avoid potential use-after-free in hci_error_reset While handling the HCI_EV_HARDWARE_ERROR event, if the underlying BT controller is not responding, the GPIO reset mechanism would free the hci_dev and lead to a use-after-free in hci_error_reset. Here's the call trace observed on a ChromeOS device with Intel AX201: queue_work_on+0x3e/0x6c __hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth
In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: prevent perpetual headroom growth syzkaller triggered following kasan splat: BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191 [..] kasan_report+0xda/0x110 mm/kasan/report.c:588 __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline] ___skb_get_hash net/core/flow_dissector.c:1791 [inline] __skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856 skb_get_hash include/linux/skbuff.h:1556 [inline] ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748 ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 __dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592 ... ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235 ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323 .. iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831 ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 ... The splat occurs because skb->data points past skb->head allocated area. This is because neigh layer does: __skb_pull(skb, skb_network_offset(skb)); ... but skb_network_offset() returns a negative offset and __skb_pull() arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value. The negative value is returned because skb->head and skb->data distance is more than 64k and skb->network_header (u16) has wrapped around. The bug is in the ip_tunnel infrastructure, which can cause dev->needed_headroom to increment ad infinitum. The syzkaller reproducer consists of packets getting routed via a gre tunnel, and route of gre encapsulated packets pointing at another (ipip) tunnel. The ipip encapsulation finds gre0 as next output device. This results in the following pattern: 1). First packet is to be sent out via gre0. Route lookup found an output device, ipip0. 2). ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future output device, rt.dev->needed_headroom (ipip0). 3). ip output / start_xmit moves skb on to ipip0. which runs the same code path again (xmit recursion). 4). Routing step for the post-gre0-encap packet finds gre0 as output device to use for ipip0 encapsulated packet. tunl0->needed_headroom is then incremented based on the (already bumped) gre0 device headroom. This repeats for every future packet: gre0->needed_headroom gets inflated because previous packets' ipip0 step incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0 needed_headroom was increased. For each subsequent packet, gre/ipip0->needed_headroom grows until post-expand-head reallocations result in a skb->head/data distance of more than 64k. Once that happens, skb->network_header (u16) wraps around when pskb_expand_head tries to make sure that skb_network_offset() is unchanged after the headroom expansion/reallocation. After this skb_network_offset(skb) returns a different (and negative) result post headroom expansion. The next trip to neigh layer (or anything else that would __skb_pull the network header) makes skb->data point to a memory location outside skb->head area. v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to prevent perpetual increase instead of dropping the headroom increment completely.
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data re-injection from stale subflow When the MPTCP PM detects that a subflow is stale, all the packet scheduler must re-inject all the mptcp-level unacked data. To avoid acquiring unneeded locks, it first try to check if any unacked data is present at all in the RTX queue, but such check is currently broken, as it uses TCP-specific helper on an MPTCP socket. Funnily enough fuzzers and static checkers are happy, as the accessed memory still belongs to the mptcp_sock struct, and even from a functional perspective the recovery completed successfully, as the short-cut test always failed. A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize tcp_sock fast path variables") - exposed the issue, as the tcp field reorganization makes the mptcp code always skip the re-inection. Fix the issue dropping the bogus call: we are on a slow path, the early optimization proved once again to be evil.
In the Linux kernel, the following vulnerability has been resolved: net/bnx2x: Prevent access to a freed page in page_pool Fix race condition leading to system crash during EEH error handling During EEH error recovery, the bnx2x driver's transmit timeout logic could cause a race condition when handling reset tasks. The bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(), which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload() SGEs are freed using bnx2x_free_rx_sge_range(). However, this could overlap with the EEH driver's attempt to reset the device using bnx2x_io_slot_reset(), which also tries to free SGEs. This race condition can result in system crashes due to accessing freed memory locations in bnx2x_free_rx_sge() 799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp, 800 struct bnx2x_fastpath *fp, u16 index) 801 { 802 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 803 struct page *page = sw_buf->page; .... where sw_buf was set to NULL after the call to dma_unmap_page() by the preceding thread. EEH: Beginning: 'slot_reset' PCI 0011:01:00.0#10000: EEH: Invoking bnx2x->slot_reset() bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing... bnx2x 0011:01:00.0: enabling device (0140 -> 0142) bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --> driver unload Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc0080000025065fc Oops: Kernel access of bad area, sig: 11 [#1] ..... Call Trace: [c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable) [c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0 [c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550 [c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60 [c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170 [c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0 [c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64 To solve this issue, we need to verify page pool allocations before freeing.
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace:
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix fortify source warning while accessing Eth segment ------------[ cut here ]------------ memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2) WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy [last unloaded: mlx_compat(OE)] CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib] Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7 RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8 R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80 FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace:
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - resolve race condition during AER recovery During the PCI AER system's error recovery process, the kernel driver may encounter a race condition with freeing the reset_data structure's memory. If the device restart will take more than 10 seconds the function scheduling that restart will exit due to a timeout, and the reset_data structure will be freed. However, this data structure is used for completion notification after the restart is completed, which leads to a UAF bug. This results in a KFENCE bug notice. BUG: KFENCE: use-after-free read in adf_device_reset_worker+0x38/0xa0 [intel_qat] Use-after-free read at 0x00000000bc56fddf (in kfence-#142): adf_device_reset_worker+0x38/0xa0 [intel_qat] process_one_work+0x173/0x340 To resolve this race condition, the memory associated to the container of the work_struct is freed on the worker if the timeout expired, otherwise on the function that schedules the worker. The timeout detection can be done by checking if the caller is still waiting for completion or not by using completion_done() function.
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [phillip@squashfs.org.uk: whitespace fix] Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: use timestamp to check for set element timeout Add a timestamp field at the beginning of the transaction, store it in the nftables per-netns area. Update set backend .insert, .deactivate and sync gc path to use the timestamp, this avoids that an element expires while control plane transaction is still unfinished. .lookup and .update, which are used from packet path, still use the current time to check if the element has expired. And .get path and dump also since this runs lockless under rcu read size lock. Then, there is async gc which also needs to check the current time since it runs asynchronously from a workqueue.
In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: reject iftype change with mesh ID change It's currently possible to change the mesh ID when the interface isn't yet in mesh mode, at the same time as changing it into mesh mode. This leads to an overwrite of data in the wdev->u union for the interface type it currently has, causing cfg80211_change_iface() to do wrong things when switching. We could probably allow setting an interface to mesh while setting the mesh ID at the same time by doing a different order of operations here, but realistically there's no userspace that's going to do this, so just disallow changes in iftype when setting mesh ID.
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes When moving a station out of a VLAN and deleting the VLAN afterwards, the fast_rx entry still holds a pointer to the VLAN's netdev, which can cause use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx after the VLAN change.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a double-free in arfs_create_groups When `in` allocated by kvzalloc fails, arfs_create_groups will free ft->g and return an error. However, arfs_create_table, the only caller of arfs_create_groups, will hold this error and call to mlx5e_destroy_flow_table, in which the ft->g will be freed again.
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix potential sta-link leak When a station is allocated, links are added but not set to valid yet (e.g. during connection to an AP MLD), we might remove the station without ever marking links valid, and leak them. Fix that.
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it.
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work The rehash delayed work is rescheduled with a delay if the number of credits at end of the work is not negative as supposedly it means that the migration ended. Otherwise, it is rescheduled immediately. After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash" the above is no longer accurate as a non-negative number of credits is no longer indicative of the migration being done. It can also happen if the work encountered an error in which case the migration will resume the next time the work is scheduled. The significance of the above is that it is possible for the work to be pending and associated with hints that were allocated when the migration started. This leads to the hints being leaked [1] when the work is canceled while pending as part of ACL region dismantle. Fix by freeing the hints if hints are associated with a work that was canceled while pending. Blame the original commit since the reliance on not having a pending work associated with hints is fragile. [1] unreferenced object 0xffff88810e7c3000 (size 256): comm "kworker/0:16", pid 176, jiffies 4295460353 hex dump (first 32 bytes): 00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a....... 00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@........... backtrace (crc 2544ddb9): [<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0 [<000000004d9a1ad9>] objagg_hints_get+0x42/0x390 [<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400 [<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160 [<00000000e81fd734>] process_one_work+0x59c/0xf20 [<00000000ceee9e81>] worker_thread+0x799/0x12c0 [<00000000bda6fe39>] kthread+0x246/0x300 [<0000000070056d23>] ret_from_fork+0x34/0x70 [<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace:
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace:
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace:
In the Linux kernel, the following vulnerability has been resolved: erspan: make sure erspan_base_hdr is present in skb->head syzbot reported a problem in ip6erspan_rcv() [1] Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make sure erspan_base_hdr is present in skb linear part (skb->head) before getting @ver field from it. Add the missing pskb_may_pull() calls. v2: Reload iph pointer in erspan_rcv() after pskb_may_pull() because skb->head might have changed. [1] BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline] BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] pskb_may_pull include/linux/skbuff.h:2756 [inline] ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5538 [inline] __netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652 netif_receive_skb_internal net/core/dev.c:5738 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5798 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549 tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 tun_alloc_skb drivers/net/tun.c:1525 [inline] tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0
In the Linux kernel, the following vulnerability has been resolved: gro: fix ownership transfer If packets are GROed with fraglist they might be segmented later on and continue their journey in the stack. In skb_segment_list those skbs can be reused as-is. This is an issue as their destructor was removed in skb_gro_receive_list but not the reference to their socket, and then they can't be orphaned. Fix this by also removing the reference to the socket. For example this could be observed, kernel BUG at include/linux/skbuff.h:3131! (skb_orphan) RIP: 0010:ip6_rcv_core+0x11bc/0x19a0 Call Trace: ipv6_list_rcv+0x250/0x3f0 __netif_receive_skb_list_core+0x49d/0x8f0 netif_receive_skb_list_internal+0x634/0xd40 napi_complete_done+0x1d2/0x7d0 gro_cell_poll+0x118/0x1f0 A similar construction is found in skb_gro_receive, apply the same change there.
In the Linux kernel, the following vulnerability has been resolved: net: ena: Fix incorrect descriptor free behavior ENA has two types of TX queues: - queues which only process TX packets arriving from the network stack - queues which only process TX packets forwarded to it by XDP_REDIRECT or XDP_TX instructions The ena_free_tx_bufs() cycles through all descriptors in a TX queue and unmaps + frees every descriptor that hasn't been acknowledged yet by the device (uncompleted TX transactions). The function assumes that the processed TX queue is necessarily from the first category listed above and ends up using napi_consume_skb() for descriptors belonging to an XDP specific queue. This patch solves a bug in which, in case of a VF reset, the descriptors aren't freed correctly, leading to crashes.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix mlx5e_priv_init() cleanup flow When mlx5e_priv_init() fails, the cleanup flow calls mlx5e_selq_cleanup which calls mlx5e_selq_apply() that assures that the `priv->state_lock` is held using lockdep_is_held(). Acquire the state_lock in mlx5e_selq_cleanup(). Kernel log: ============================= WARNING: suspicious RCU usage 6.8.0-rc3_net_next_841a9b5 #1 Not tainted ----------------------------- drivers/net/ethernet/mellanox/mlx5/core/en/selq.c:124 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 2 locks held by systemd-modules/293: #0: ffffffffa05067b0 (devices_rwsem){++++}-{3:3}, at: ib_register_client+0x109/0x1b0 [ib_core] #1: ffff8881096c65c0 (&device->client_data_rwsem){++++}-{3:3}, at: add_client_context+0x104/0x1c0 [ib_core] stack backtrace: CPU: 4 PID: 293 Comm: systemd-modules Not tainted 6.8.0-rc3_net_next_841a9b5 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace:
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Properly link new fs rules into the tree Previously, add_rule_fg would only add newly created rules from the handle into the tree when they had a refcount of 1. On the other hand, create_flow_handle tries hard to find and reference already existing identical rules instead of creating new ones. These two behaviors can result in a situation where create_flow_handle 1) creates a new rule and references it, then 2) in a subsequent step during the same handle creation references it again, resulting in a rule with a refcount of 2 that is not linked into the tree, will have a NULL parent and root and will result in a crash when the flow group is deleted because del_sw_hw_rule, invoked on rule deletion, assumes node->parent is != NULL. This happened in the wild, due to another bug related to incorrect handling of duplicate pkt_reformat ids, which lead to the code in create_flow_handle incorrectly referencing a just-added rule in the same flow handle, resulting in the problem described above. Full details are at [1]. This patch changes add_rule_fg to add new rules without parents into the tree, properly initializing them and avoiding the crash. This makes it more consistent with how rules are added to an FTE in create_flow_handle.
In the Linux kernel, the following vulnerability has been resolved: i40e: Do not use WQ_MEM_RECLAIM flag for workqueue Issue reported by customer during SRIOV testing, call trace: When both i40e and the i40iw driver are loaded, a warning in check_flush_dependency is being triggered. This seems to be because of the i40e driver workqueue is allocated with the WQ_MEM_RECLAIM flag, and the i40iw one is not. Similar error was encountered on ice too and it was fixed by removing the flag. Do the same for i40e too. [Feb 9 09:08] ------------[ cut here ]------------ [ +0.000004] workqueue: WQ_MEM_RECLAIM i40e:i40e_service_task [i40e] is flushing !WQ_MEM_RECLAIM infiniband:0x0 [ +0.000060] WARNING: CPU: 0 PID: 937 at kernel/workqueue.c:2966 check_flush_dependency+0x10b/0x120 [ +0.000007] Modules linked in: snd_seq_dummy snd_hrtimer snd_seq snd_timer snd_seq_device snd soundcore nls_utf8 cifs cifs_arc4 nls_ucs2_utils rdma_cm iw_cm ib_cm cifs_md4 dns_resolver netfs qrtr rfkill sunrpc vfat fat intel_rapl_msr intel_rapl_common irdma intel_uncore_frequency intel_uncore_frequency_common ice ipmi_ssif isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp gnss coretemp ib_uverbs rapl intel_cstate ib_core iTCO_wdt iTCO_vendor_support acpi_ipmi mei_me ipmi_si intel_uncore ioatdma i2c_i801 joydev pcspkr mei ipmi_devintf lpc_ich intel_pch_thermal i2c_smbus ipmi_msghandler acpi_power_meter acpi_pad xfs libcrc32c ast sd_mod drm_shmem_helper t10_pi drm_kms_helper sg ixgbe drm i40e ahci crct10dif_pclmul libahci crc32_pclmul igb crc32c_intel libata ghash_clmulni_intel i2c_algo_bit mdio dca wmi dm_mirror dm_region_hash dm_log dm_mod fuse [ +0.000050] CPU: 0 PID: 937 Comm: kworker/0:3 Kdump: loaded Not tainted 6.8.0-rc2-Feb-net_dev-Qiueue-00279-gbd43c5687e05 #1 [ +0.000003] Hardware name: Intel Corporation S2600BPB/S2600BPB, BIOS SE5C620.86B.02.01.0013.121520200651 12/15/2020 [ +0.000001] Workqueue: i40e i40e_service_task [i40e] [ +0.000024] RIP: 0010:check_flush_dependency+0x10b/0x120 [ +0.000003] Code: ff 49 8b 54 24 18 48 8d 8b b0 00 00 00 49 89 e8 48 81 c6 b0 00 00 00 48 c7 c7 b0 97 fa 9f c6 05 8a cc 1f 02 01 e8 35 b3 fd ff <0f> 0b e9 10 ff ff ff 80 3d 78 cc 1f 02 00 75 94 e9 46 ff ff ff 90 [ +0.000002] RSP: 0018:ffffbd294976bcf8 EFLAGS: 00010282 [ +0.000002] RAX: 0000000000000000 RBX: ffff94d4c483c000 RCX: 0000000000000027 [ +0.000001] RDX: ffff94d47f620bc8 RSI: 0000000000000001 RDI: ffff94d47f620bc0 [ +0.000001] RBP: 0000000000000000 R08: 0000000000000000 R09: 00000000ffff7fff [ +0.000001] R10: ffffbd294976bb98 R11: ffffffffa0be65e8 R12: ffff94c5451ea180 [ +0.000001] R13: ffff94c5ab5e8000 R14: ffff94c5c20b6e05 R15: ffff94c5f1330ab0 [ +0.000001] FS: 0000000000000000(0000) GS:ffff94d47f600000(0000) knlGS:0000000000000000 [ +0.000002] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000001] CR2: 00007f9e6f1fca70 CR3: 0000000038e20004 CR4: 00000000007706f0 [ +0.000000] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ +0.000001] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ +0.000001] PKRU: 55555554 [ +0.000001] Call Trace: [ +0.000001]
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix warning during rehash As previously explained, the rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. When the work runs out of credits it stores the current chunk and entry as markers in the per-work context so that it would know where to resume the migration from the next time the work is scheduled. Upon error, the chunk marker is reset to NULL, but without resetting the entry markers despite being relative to it. This can result in migration being resumed from an entry that does not belong to the chunk being migrated. In turn, this will eventually lead to a chunk being iterated over as if it is an entry. Because of how the two structures happen to be defined, this does not lead to KASAN splats, but to warnings such as [1]. Fix by creating a helper that resets all the markers and call it from all the places the currently only reset the chunk marker. For good measures also call it when starting a completely new rehash. Add a warning to avoid future cases. [1] WARNING: CPU: 7 PID: 1076 at drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_keys.c:407 mlxsw_afk_encode+0x242/0x2f0 Modules linked in: CPU: 7 PID: 1076 Comm: kworker/7:24 Tainted: G W 6.9.0-rc3-custom-00880-g29e61d91b77b #29 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:mlxsw_afk_encode+0x242/0x2f0 [...] Call Trace:
N/A
SRPMS
- kernel-4.18.0-553.8.1.el8_10.src.rpm
MD5: 5c9fc603733e181379365fa651af838d
SHA-256: 2a057ebff0eb10d70ca8030eb66f0cd94b875a0ba76db403cad0346b5d4cbd29
Size: 132.05 MB
Asianux Server 8 for x86_64
- bpftool-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: f71fc085d5688dd548de6c830085db9b
SHA-256: d2fd35881bb1ee932985650a6633eb5c123738c5d80ecf2d0fc29c2f155df1e0
Size: 11.12 MB - kernel-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 2576b17b84e2d757a67065bef8f216b9
SHA-256: 9427c256abd1d0274955a574d6d0df9c82621d6448b1dc433c387f17cead9e07
Size: 10.38 MB - kernel-abi-stablelists-4.18.0-553.8.1.el8_10.noarch.rpm
MD5: fb59bc0e67f72aaceda78774bb4f0743
SHA-256: d629db3f76a84b1fa79108175314e978344dbfef70e8f61a444d7ea298844538
Size: 10.40 MB - kernel-core-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 8c60f11ac26f51de5b65153bddbf8682
SHA-256: 725488d5add6b0380719018fb34f42acd10532dcfd7558c34812af88258525d1
Size: 43.38 MB - kernel-cross-headers-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: a249235cce8ed37ab7774e9e66092de6
SHA-256: 42e3f298dab95748b4048ce08a02addffc375b44d31a2ea51cb49e60606a7c36
Size: 15.72 MB - kernel-debug-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: c8a0c520509bec9a99529976ee9176fa
SHA-256: c6a84a47a3d3a17d0435eb033750a85e9f7ab350b723e23d41883acede8ab952
Size: 10.38 MB - kernel-debug-core-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: f94255485d9238abf2a59e80b322354e
SHA-256: 6e216b333db7c86342b7902d89d7d1379535f44333492e1f342b378c3983122f
Size: 72.64 MB - kernel-debug-devel-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: f446894cb9dff5421cf6f82c027a1b3a
SHA-256: 4cf1675d0ff548343a0db11825db402b2f36cd108d2374740d45420a6262fd80
Size: 24.19 MB - kernel-debug-modules-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 22b83a6ea67733212d7cf31571d518af
SHA-256: dd1f6e3dce305ca3d1b64ebbc1de79674817805c3c2930d08b0caad1d71e3fd2
Size: 65.77 MB - kernel-debug-modules-extra-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 1d63ed92a0bb77bc2322ed0435e686f7
SHA-256: 9483c750f59cd6db1dd7d51f924d5cffe6d9c5356f9a59d631e4fbe5ea591800
Size: 11.76 MB - kernel-devel-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: d9021129d50b42eac5f84ed6a817e2cc
SHA-256: 5ea5793187b0b742b3ac19c4120544b0a06328f56fb1fce027c4a1d20f40a994
Size: 23.99 MB - kernel-doc-4.18.0-553.8.1.el8_10.noarch.rpm
MD5: d0c310688436b032d0e3abe0a03bcdcf
SHA-256: b50778ebfbc3b8db2f6826be68ed79059f9b1393fa06eb01da4ed59069168adc
Size: 28.23 MB - kernel-headers-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: ad8c358c3819574efda3b07fe024ff4e
SHA-256: a60fe1fec94caff0bc2291ad98fca31e8e6d731a6f780192a464f860f6dd1f2c
Size: 11.73 MB - kernel-modules-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: e7538150717a60f0aa78a18a243a44c8
SHA-256: 08e552a78b24723403659da5eb76a3dc4346e03cd97404911b5f4886367f073e
Size: 36.18 MB - kernel-modules-extra-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: da765584ea20a37ec32c1b7595f21f34
SHA-256: 845ef7060ce1433f27c76c442202149febae656719775dc4aa8c6e84518c52d9
Size: 11.07 MB - kernel-tools-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 1900cf83b75f19bd783ec4dd2a50ec49
SHA-256: d034cbe91c19daf6dedb1c3c53bbd08809fef6157ec63635f0f9aaa1853ed1ce
Size: 10.60 MB - kernel-tools-libs-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: aaddee896d817948451a4a45cea3753b
SHA-256: e13df4e548d9d60415a6ed785cb61dfabbaeebbfbeebfc96abfe5a47d250dd65
Size: 10.39 MB - kernel-tools-libs-devel-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: 4075c88e3c7a46a880784594f3c4d9e3
SHA-256: 63360c71b336b33f7289a1f9b08238744e9731977fb4795b2eb533658ca92023
Size: 10.38 MB - perf-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: d169c9b18750bb80f90db6fa4271b260
SHA-256: eb1aedb87318d54da46e47d0671bea7814eb25e6e9207b079935ef0ca30cde8d
Size: 12.71 MB - python3-perf-4.18.0-553.8.1.el8_10.x86_64.rpm
MD5: e9fae83da45f7f5db91f0cfb1eedca7f
SHA-256: 6ba06fba4e1870e46e347007fdb57871f067d1b4b82f1be447bd3e7257949900
Size: 10.50 MB