edk2-20220126gitbb1bba3d77-4.el8
エラータID: AXSA:2023-5950:03
以下項目について対処しました。
[Security Fix]
- OpenSSL には、サイドチャンネル攻撃が可能な問題があるため、
クライアントとサーバー間の本物の接続を観察していた攻撃者により、
サーバーに多くの試行メッセージを送信することで、ネットワーク
越しに平文を復元できる脆弱性が存在します。(CVE-2022-4304)
- OpenSSL の PEM_read_bio_ex() 関数には、ペイロードデータのサイズ
が 0 バイトの PEM ファイルを読み取った際、当該関数の実行が失敗する
にもかかわらず解放済みバッファーへのポインターをヘッダ引数に含めて
しまう問題があるため、リモートの攻撃者により、細工した PEM ファイル
を介して、クラッシュの発生とこれに起因するサービス拒否攻撃を可能と
する脆弱性が存在します。(CVE-2022-4450)
- OpenSSL の BIO_new_NDEF() 関数には、CMS 受信者の公開鍵が無効
な場合など、当該関数の実行が失敗する特定の条件下で引き渡された BIO
チェーン情報を適切にクリーンアップせず、解放されたメモリ領域を利用
してしまう問題があるため、リモートの攻撃者により、クラッシュの発生
とこれに起因するサービス拒否攻撃を可能とする脆弱性が存在します。
(CVE-2023-0215)
- OpenSSL の X.509 の GENERAL_NAME 構造体には、x400Address
メンバの型指定が誤って ASN1_TYPE として宣言されていることに起因
して任意のポインターを memcmp() 関数に引き渡すことができる問題が
あるため、リモートの攻撃者により、CRL チェックを有効にするなどの
細工をしたアプリケーションを介して、メモリ領域の不正な読み取りや
サービス拒否攻撃を可能とする脆弱性が存在します。(CVE-2023-0286)
パッケージをアップデートしてください。
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue.
The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected.
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network.
N/A
SRPMS
- edk2-20220126gitbb1bba3d77-4.el8.src.rpm
MD5: 974558b177e8a1919d589d738fdd354c
SHA-256: 0b1fe1c1b537d9bcd5dc11dfd1f34910f1cdd8f0bc1fff785f44ac9e1bda16ec
Size: 14.60 MB
Asianux Server 8 for x86_64
- edk2-ovmf-20220126gitbb1bba3d77-4.el8.noarch.rpm
MD5: d88d6400a67481d67457602ad6cff002
SHA-256: bf4fd43e2fbb07027af2f4399aae71d6c0dfddd6b71af7aa8439c6a8f9cda78d
Size: 3.62 MB