runc-1.2.5-3.el9_6
エラータID: AXSA:2025-11079:02
The runC tool is a lightweight, portable implementation of the Open Container Format (OCF) that provides container runtime.
Security Fix(es):
* runc: container escape via 'masked path' abuse due to mount race conditions (CVE-2025-31133)
* runc: container escape with malicious config due to /dev/console mount and related races (CVE-2025-52565)
* runc: container escape and denial of service due to arbitrary write gadgets and procfs write redirects (CVE-2025-52881)
For more details about the security issue(s), including the impact, a CVSS score, acknowledgments, and other related information, refer to the CVE page(s) listed in the References section.
CVE-2025-31133
runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7 and below, 1.3.0-rc.1 through 1.3.1, 1.4.0-rc.1 and 1.4.0-rc.2 files, runc would not perform sufficient verification that the source of the bind-mount (i.e., the container's /dev/null) was actually a real /dev/null inode when using the container's /dev/null to mask. This exposes two methods of attack: an arbitrary mount gadget, leading to host information disclosure, host denial of service, container escape, or a bypassing of maskedPaths. This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3.
CVE-2025-52565
runc is a CLI tool for spawning and running containers according to the OCI specification. Versions 1.0.0-rc3 through 1.2.7, 1.3.0-rc.1 through 1.3.2, and 1.4.0-rc.1 through 1.4.0-rc.2, due to insufficient checks when bind-mounting `/dev/pts/$n` to `/dev/console` inside the container, an attacker can trick runc into bind-mounting paths which would normally be made read-only or be masked onto a path that the attacker can write to. This attack is very similar in concept and application to CVE-2025-31133, except that it attacks a similar vulnerability in a different target (namely, the bind-mount of `/dev/pts/$n` to `/dev/console` as configured for all containers that allocate a console). This happens after `pivot_root(2)`, so this cannot be used to write to host files directly -- however, as with CVE-2025-31133, this can load to denial of service of the host or a container breakout by providing the attacker with a writable copy of `/proc/sysrq-trigger` or `/proc/sys/kernel/core_pattern` (respectively). This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3.
CVE-2025-52881
runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7, 1.3.2 and 1.4.0-rc.2, an attacker can trick runc into misdirecting writes to /proc to other procfs files through the use of a racing container with shared mounts (we have also verified this attack is possible to exploit using a standard Dockerfile with docker buildx build as that also permits triggering parallel execution of containers with custom shared mounts configured). This redirect could be through symbolic links in a tmpfs or theoretically other methods such as regular bind-mounts. While similar, the mitigation applied for the related CVE, CVE-2019-19921, was fairly limited and effectively only caused runc to verify that when LSM labels are written they are actually procfs files. This issue is fixed in versions 1.2.8, 1.3.3, and 1.4.0-rc.3.
Update packages.
runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7 and below, 1.3.0-rc.1 through 1.3.1, 1.4.0-rc.1 and 1.4.0-rc.2 files, runc would not perform sufficient verification that the source of the bind-mount (i.e., the container's /dev/null) was actually a real /dev/null inode when using the container's /dev/null to mask. This exposes two methods of attack: an arbitrary mount gadget, leading to host information disclosure, host denial of service, container escape, or a bypassing of maskedPaths. This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3.
runc is a CLI tool for spawning and running containers according to the OCI specification. Versions 1.0.0-rc3 through 1.2.7, 1.3.0-rc.1 through 1.3.2, and 1.4.0-rc.1 through 1.4.0-rc.2, due to insufficient checks when bind-mounting `/dev/pts/$n` to `/dev/console` inside the container, an attacker can trick runc into bind-mounting paths which would normally be made read-only or be masked onto a path that the attacker can write to. This attack is very similar in concept and application to CVE-2025-31133, except that it attacks a similar vulnerability in a different target (namely, the bind-mount of `/dev/pts/$n` to `/dev/console` as configured for all containers that allocate a console). This happens after `pivot_root(2)`, so this cannot be used to write to host files directly -- however, as with CVE-2025-31133, this can load to denial of service of the host or a container breakout by providing the attacker with a writable copy of `/proc/sysrq-trigger` or `/proc/sys/kernel/core_pattern` (respectively). This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3.
runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7, 1.3.2 and 1.4.0-rc.2, an attacker can trick runc into misdirecting writes to /proc to other procfs files through the use of a racing container with shared mounts (we have also verified this attack is possible to exploit using a standard Dockerfile with docker buildx build as that also permits triggering parallel execution of containers with custom shared mounts configured). This redirect could be through symbolic links in a tmpfs or theoretically other methods such as regular bind-mounts. While similar, the mitigation applied for the related CVE, CVE-2019-19921, was fairly limited and effectively only caused runc to verify that when LSM labels are written they are actually procfs files. This issue is fixed in versions 1.2.8, 1.3.3, and 1.4.0-rc.3.
N/A
SRPMS
- runc-1.2.5-3.el9_6.src.rpm
MD5: 503f70598730fb9b725da63a9bd7c432
SHA-256: 4c2964bbbc9c0593015ebb992e7d424f52dd0c63ac613c0a8f2fe8d95c7fd609
Size: 2.73 MB
Asianux Server 9 for x86_64
- runc-1.2.5-3.el9_6.x86_64.rpm
MD5: 301cce586ed9ab49ec6fee2b5ce8c460
SHA-256: ab8fa98c2a7f9561fb8fcbd7b3a2c4c63ccfc0fe8ca0a136aaef046b6b3b009e
Size: 3.78 MB